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Introduction

In population genetics situations are not uncommon where outcrossing and
inbreeding processes are worjsiijgsimultaneoiisly in varying degrees. For example

there are plant species like barley and wheat, rice, lima beans, and etc. which under
go mixed selfing and random mating. The mathematical analysis of a system of
a mixed random mating and selfing has been given by Garber (1951), Bennett and
Binet (1956) and Ghai (1964). More recently Ghai (1969) has considered models
based on a system of mixed random and full-sib mating. Mixed mating systems
provide means for maintaining polymorphic variation in the absence of heterozygote
advantage. Theoretical effects of such systems on the maintenance of heterozygosity
have been previously discussed by Ghai (1966, 1969).

2. IVIodels

In the present paper, theoretical models will be developed for populations
under partial inbreeding which include mixed random and (a) half-sib mating, {b)
parent-offspring mating, (c) double first cousin mating and {d) a general mixture of
consanguineous mating systems. We shall be interested in the overall dynamics of
the population as well as in its equilibrium state, and in the level of heterozygosity
that can be main tained under such systems of mating.

The models to be discussed will apply to diploid populations. The
development will be restricted to the segregation of a single locus. We shall assume
that there are constant probabilities x and (1—a;) of inbreeding and random mating
respectively. For example, in the case of mixed random and half-sib mating, will
be the probability of half-sib mating.

In the development of the models we shall usethe concept of identity by
descent. This will involve two indices, the "coefficient de parente" of two
individuals X and Y as defined by Malecot and the coetficient of inbreeding of
the individual Xr We shall also denote these by and when the individual(s)
belong to generation n. We shall further denote the frequencies of the three
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genotypes AA, Aa and aa in generatiori n by i)„, and i?„ respectively and at
equili brium by D, H and R, respectively.

(a) Mixed random and half-sib mating : Coiisider models of mixed half-
sibmating in proportion x, and random mating in the remaining proportion. The
appropriate recurrence relations describing the genotypic frequencies under such a
system can be derived by considering the following :

=^['-xY .

where /"xy H.S. denotes the "coefficient deparente'" or coefficient of parentage given
X and Y are half-sibs. This will lead to

In the limit when n ->co

p_ X
n-^oo " 8-7x •

The genotypic distribution at equilibrium is cohipletely determined once we know F
which is given explicitly by (2). However, to investigate the dynamics of the popu
lation and to specify the genotypic distribution at any given time, say generation «,
we have to use Equation (1) along with the relation H„=(l - F„)Ho where Ho=2pq
is the frequency of the heterozygotes in the initial panmictic population, and p and
q(p-{-q==l) are frequencies of the two alleles A and c, respectively. Therefore, the
recurrence equation for Hn becomes

^Hr.-{\-x)H,= Q. (3)
This can be easily solved to give

(4)

where

(5)

and and are the roots of the characteristic equation

(6)

which are

\ =-^(3^+/y^9;cH8A: j
X,= -^Ox- /^gx-'̂ Zx



and are less than unity. The constants B and C are determined from the initial
conditions

Ho=2pq

H,=(lr-ximo- (7)

This will give the solution (4) as

This gives the frequency of Aa genotype in generation n. H, given by (5) is the pro
portion of heterozygotes that will be present in the population at equilibrium under
the mating system considered. This depends upon both jthe initial heterozygosity
and the amount of half-sib mating. The proportions of other genotypes in genera
tion n can be easily derived to give Dn=p—^Hn and Rn=q—^H„, because the gene
frequencies p and q are invariant over time. At equilibrium these will reduce to
D=p—^ H and R=q—^ H.

{b) Mixed random and parent-offspring mating : In a population with
parent-offspring mating in proportion and random mating in proportion (1 —:x:),
we have as before

x{F„+^ P.O.)

4(l+i='«+2F„+i) (9)

and

The recurrence relation for this is, therefore, given by

(11)

which will give

(12)

The recurrence relation (11) is identical with that for a system of mixed
random and full-sib mating (Ghai, 1969). Therefore, mixed random mating and
parent-offspring mating would yield the same results as obtained under a system of
mixed random and full-sib mating which have already been discussed by Ghai
(1969). The amount of heterozygosity that would be present in a population at
equilibrium under such a system is given by (12). Similar results have also been
reported by Karlin (1968) byfollowing thegeneration matrix approach.
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(c) Mixed random and double first cousin mating: Under this model
with double first cousin mating in a fraction x of the population, we have

/='fl+3=(^/8)(l+^'„+2f„+i+4F„+2) (13)

which gives at equilibrium

lim

H=

F= F„=Jc/(8—7x):
«->oo " V

The recurrence relation for H„ is then given by

.jy„+3-(x/2)//„+3-(x/4)//„H-(x/8)jy„-(l-x)F„=0 ,

which gives

\6{\—x)pq
8—7x •

(14)

(15)

(16)

Equation (16) gives the proportion of heterozygotes at equilibrium under a
system of mixed random and double first cousin -mating. This is identical with
Equation (5) which gives the amount of heterozygosity at equilibrium under a system
of mixed random and half-sib mating. The general recurrence relations for the two
systems are quite different and hence will yield different genotypic distribution in
generation n. But when n is sufiiciently large i.e. at equilibrium, the genotypic
distribution of the two systems coincide.

{d) Generalmixture of consanguineous mating systems shall now
consider a general situation where the mating system involves mating at random and
mating among relatives with varying degrees, of relationship. Let the individuals
mate with the following probabilities ; . .

Pr[Randorh. mating] = —r - - •-

Pr[Selfing] ^

PriFull-sib, mating]; — =y

Pr[Half-sib mating] " =z

with r+x\:y-{-z=\: Matings between parents and offspring, and those between
double first cousins are not included because as we have seen earlier, the
effect of these matings on the population structure isthe same, at least in equilibrium,
as that of full-sib and half-sib matings, respectively.

The situation may not seem to be as general and exhaustive ' to include
all kinds of relatives but it does take account of important ones.

The recurrence relation in this case will come out to be

,F„+,=(x/2) (l+>F«+i)+(:»'/4)(l+^'« + 2 '̂„+i)
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This relationship can be easily verified directly (see Appendix). At
equilibrium

«->oo " ^-^x-ey—lz' (18)

This will give the frequency ofheterozygotes at equilibrium as

I6rpq
%r-^Ax-\-2y-\-z ' (19)

Recently Karlin (1968) has given some results of mixed imprinting,
fullsib mating, random mating and selfing. He has derived these results following
the generation matrix approach.

3. Discussion

The resuhs obtained have bearing on populations which reproduce by
mixture of cross-fertilization and inbreeding. The results could also be interpreted
as describing the effect of departure from breeding process of complete random
matmg or ofdeparture from complete inbreeding. It is assumed that population is
large and there are no viability or fertility differences.

The mathematical analysis shows that systems ofmixed random and parent
offspring mating, and mixed random and full-sib mating yield identical recurrence
relations. Therefore, these two systems would lead to the same genotypic distribu
tion. The systems ofmixed random and half-sib mating and mixed random and
double first cousin mating result in different genotypic distribution in a dynamic
population. These distributions, 'however, coincide when n is sufficiently large i.e.
at equilibrium.

Under such mating systems even with high degree of inbreeding, there
is a considerable amount of heterozygosity in the population at equilibrium. The
level of heterozygosity depends upon the system of mixed mating, the amount of
inbreeding and the initial heterozygosity. It may be ofinterest to compare the
relative effects of these mixed mating systems on ,the maintenance of heterozygosity.
The expected heterozygosity relative to the initial heterozygosity in the population at
equilibrium under the three systems is depicted graphically in Figure!. There is
practically no loss in heterozygosity when the system of mating deviates from complete
random mating by small amounts of inbreeding. In a highly inbred popiilation with
say 90-95 percent of inbreeding, the heterozygosity at equilibrium is to the order of
18-9-5 percent ofthe initial heterozygosity when inbreeding is by selfing. There is
about one and a half times as much heterozygosity when inbreeding is by full-sib
orparent-offspring mating, and three times as much when inbreeding is by half-sib
mating or doublefirst cousin mating.



S = Selfing

F.S.= Full-sib mating

H,S.= Half-sib mating-

0 20 ho 60
Percentage Inbreeding

Figure 1. Amount of heterozygosity relative to initial heterozygosity expected in populations at
equilibrium under mixed random mating and inbreeding
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If x„ Xj, X3 are the equivalent amounts of selfing, full-sib or parent-
offspring mating, and half-sib or double first cousin mating respectively in the sys
tem of mixed mating, which yield the same amount of the heterozygosis in the
population at equilibrium, then we have

^ B-lx, • relationship yields
and *3

showing that Xg bears the same relationship with *2- as ;c2 bears with x^. Thus, for
example, 20 per cent of selfing is equivalent to about 33 per cent of full-sib or parent
offspring mating which is equivalent to about50 per cent of half-sib or double first
cousin mating in the population in the sense they would give the same final genotypic
proportions in the population. Such comparisons, however, shall be meaningful
when inbreeding procedures are compared inpairs. It shall be erroneous to conclude
that we could replace the fractions ofsay full-sib and half-sib matings in a general
mixture of consanguineous matings by the corresponding equivalent amounts of
selfing and then consider the results under the model of mixed random mating and
selfing with the augmented probability of selfing.

4. Summary

In this paper theoretical models have been developed for populations under
partial consanguineous matings viz., mixed random and (a) half-sub mating, {b)
parent-offspring mating, (c) double first cousin mating, and (d) mating among
relatives with varying degrees of relationship. The genotypic distribution under such
mating systems at any given time and at equilibrium are discussed. An important
feature of the results is the considerable amount of heterozygosity at equilibrium,
that these systems can maintain in predominantly inbred populations. The level of
heterozygosity depends upon the system of mixed mating, amount of inbreeding.
and the initial heterozygosity. The relative effects of different systems of mixed
mating on the maintenance of heterozygosity in equilibrium are discussed.
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APPENDIX

Suppose there is selfing with probability ;c and full-sib mating with pro
bability X=l—^). Then we have

-f'n+a= ^ j(l+-fn+l)+ (1+Jp'n+2i^n+i)
This can be seen by considering the following probabilistic argument.

Generation

and

n+1

n+2-

Xn Yn
0 0 0

\ /
\/
/\

- / \
0 0 0

/
/

/
. 1 . •

0 0
/.

We know that ,

+ Y '" v ,
^B+1 •'n + i

Y„+,=x[rX„+i Yn+,IY^X] +yl'-X„+, Y„+JX, 7^.5.]

where Y=X denotes sellings and F.S. denotes full-sibbing.
Now ' •

'•^r.+a y„+i r=z

["Xn+I Yn+,IX, YF.S.]=^['X„X„+^Y„Y„+2^X„Y„]

, 1+F«,
+ 2F„,

Therefore

F„^,= (xl2)il -\- F„+,)+(yl4)il+F„+2F,,+,).'

(1)

(2)

(3)
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The formula (3) can also be verified as follows :

Generation

0

1

2

3

S F.S.

F.S.

(a) (b) (c) ,(d)

5'=Selfing ^".5'.=Full-sibbing

As we progress from' Zeroth generation (F„=0), there are various ways in which the
individuals arise to form successive generations. This is shown in the above
diagram. In generation 1, f=l/2,if selfed or F=l/4 (if ithere',is ful-sib mating.
This would give an average coefficient of inbreeding in generation 1 as

'.-KD " (O
1+*

In generation 2 an individual can arise in the following four ways.

Mating in Generation F

Therefore

1 2

(«) S S 3/4

ib) F.S. S 5/8

ic) S F.S: 1/2

(d) F.S. F.S. 3/8

F^=x\3l4)+xy{5IS)+xy{ll2)+/im
= (1/8)(6xH9x7+3j2) .

^mix+y){2x+y)=(3m+x)

(4)

(5)



m

which is in agreement if we use the general formula (3). We can now extend the
above argument to the individuals of generation 3 which can arise in the following
eight ways.

Mating in Generatioia F

1 2 3

(«) S S S IIS

(.b) S S F.S. 3/4

(c) S F.S. S 3/4

~ id) F.S. S S 13/16

(e) S F.S. F.S. 5/8

if) F.S. S F.S. 5/8

ig) F.S. F.S. S 11/16

Qi) F.S. F.S. F.S. 1/2

Thus

. Fs=xVI8)-Yx'y{3l4+3/4+13/16)+^/(5/8+5/8+11/16) 4;^=(1 /2)

=(1 /16)(14x3+37x2j+ 2\xyH

= Hn6){14x^+8yH23xy)(x+y)

«= (1/16){8(a:+j)H 6.y(x+j;)+xy}

^illl6)(9+6x+xy). (6)

Again this can be easily seen to be in agreement, with •the. results that would be
obtained by using the general formula (3).


